Biocompatible and biodegradable wound dressings on the basis of seaweed polysaccharides (review of literature)
https://doi.org/10.24884/0042-4625-2020-179-4-109-115
Abstract
The review presents the characteristics of modern biocompatible and biodegradable wound dressings on the basis of seaweed polysaccharides (carrageenans of red algae, fucoidans and alginates of brown algae, ulvans of green algae) and notes the key physicochemical and biological properties that are important for constructing wounds dressings. There are information on various types of wound dressings and results of experimental and clinical tests of dressings in the treatment of wounds of various origins. Particular attention is paid to hydrogel dressings, since hydrogels meet the basic requirements for an ideal wound dressing, and many marine polysaccharides are able to form hydrogels.
About the Authors
T. A. KuznetsovaSomov Institute of Epidemiology and Microbiology
Russian Federation
Kuznetsova Tatyana A. - Dr. of Sci. (Med.), Chief Research Fellow of the Laboratory of Immunology.
VladivostokCompeting Interests:
Authors declare no conflict of interest
N. N. Besednova
Somov Institute of Epidemiology and Microbiology
Russian Federation
Besednova Natalia N. - Academician of the RAS, Dr. of Sci. (Med.), Professor, Chief Research Fellow of the Laboratory of Immunology.
Vladivostok
Competing Interests: Authors declare no conflict of interest
V. V. Usov
Far Eastern Federal University
Russian Federation
Usov Viktor V. - Dr. of Sci. (Med.), Professor of the School of Biomedicine.
Vladivostok
Competing Interests: Authors declare no conflict of interest
B. G. Andryukov
Somov Institute of Epidemiology and Microbiology
Russian Federation
Andryukov Boris G. - Dr. of Sci. (Med.), Head of the Laboratory of Molecular Epidemiology and Microbiology.
Vladivostok
Competing Interests: Authors declare no conflict of interest
References
1. Andreev D. Yu. Paramonov D. A., Muhtarova A. M. Covremennye ranevye pokrytiya. Ch.1. Vestnik khirurgii im. I. I. Grekova. 2009;168 (3):98-102. (In Russ.).
2. Shablin D. V., Pavlenko S. G., Evglevskij A. A. et al. Sovremennye ranevye pokrytiya v mestnom lechenii ran razlichnogo geneza. Fundamental'nye issledovaniya. 2013;12:361-366. (In Russ.).
3. Mayet N., Choonara Y. E., Kumar P, Tomar L. K., Tyagi C., Du Toit L. C., Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J. Pharm. Sci. 2014;103:2211-2230. Doi: 10.1002/jps.24068.
4. Boateng J., Catanzano O. Advanced therapeutic dressings for effective wound healing - A Review. J. Pharm. Sci. 2015;10(4):3653-3680. Doi: 10.1002/jps.24610.
5. Vinnik Yu. S., Markelova N. M., Shishackaya E. I., Kuznecov M. N., Solov'eva N. S., Zuev A. P. K voprosu o vybore ranevyh pokrytij v lechenii gnojnyh ran. Fundamental'nye issledovaniya. 2015;1-5:1061-1064. (In Russ.).
6. Negut I., Grumezescu V., Grumezescu M. A. Treatment Strategies for Infected Wounds. Molecules. 2018;23(9):2392. Doi: 10.3390/mol-ecules23092392.
7. Goossens A., Cleenewerck M.-B. New wound dressings: classification, tolerance. Eur. J. Dermatol. 2010;20(1):24-26.
8. Das S., Baker A. B. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front. Bioeng. Biotechnol. 2016;4:82. Doi: 10.3389/ fbioe.2016.00082.
9. Salcido R. The Cicatrix: The Functional Stage of Wound Healing. Advances in Skin & Wound Care. 2018;31(1):581.
10. Sharma A., Zakka L. R., Mihm M. C. Jr. Anatomy of the human skin and wound healing. In: Yarmush M. L., Golberg A., eds. Bioengineering in Wound Healing: A Systems Approach. Toh Tuck Link, Singapore, World Scientific, 2017.
11. Kuzin M. I., Kostyuchenok B. M. Rany i ranevaya infekciya. Rukovodstvo dlya vrachej. 2-e izd., pererab. i dop. Moscow, Medicina, 1990:592. (In Russ.).
12. Jovic T. H., Kungwengwe G., Mills A. C., Whitaker I. S. Plant-Derived Biomaterials: A Review of 3D Bioprinting and Biomedical Applications. Front. Mech. Eng. 2019;5:19. Doi: 10.3389/fmech.2019.00019.
13. Mayet N., Choonara Y. E., Kumar P, Tomar L. K., Tyagi C., Du Toit L. C., Pillay V. A comprehensive review of advanced biopolymeric wound healing systems. J. Pharm. Sci. 2014;103:2211-2230. Doi: 10.1002/jps.24068.
14. Bakarich S. E., Balding P, Gorkin R., Spinks G. M., Panhuis M. Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine. RSC Adv. 2014;4(72):38088-38092. Doi: 10.1039/C4RA07109C.
15. Varghese J. S., Chellappa N., Fathima N. N. Gelatin-carrageenan hydrogels: Role of pore size distribution on drug delivery process. Colloids Surf. B Biointerfaces. 2014;113:346-351. Doi: 10.1016/j.col-surfb.2013.08.049.
16. Zhang L., Ma Y., Pan X., Chen S., Zhuang H., Wang S. A composite hydrogel of chitosan/heparin/poly (y-glutamic acid) loaded with superoxide dismutase for wound healing. Carbohydr Polym. 2018;180:168-174.
17. Venkatesan J., Bhatnagar I., Kim S.-K. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs. 2014;12:300-316. Doi: 10.3390/md12010300.
18. Lowe B., Venkatesan J., Anil S., Shim M. S., Kim S.-K. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Int. J. Biol. Macromol. 2016;93:1479-1487. Doi: 10.1016/j.ijbiomac.2016.02.054.
19. Liu Y., Sui Y., Liu C., Liu C., Wu M., Li B., Li Y. A physically crosslinked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr Polym. 2018;188:27-36.
20. Lokhande G., Carrow J. K., Thakur T., Xavier J. R., Parani M., Bayless K. J., Gaharwar A. K. Nanoengineered injectable hydrogels for wound healing application. Acta Biomaterialia. 2018;70:35-47.
21. Pawar H. V., Tetteh J., Boateng J. S. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf. B Biointerfaces. 2013;102:102-110. Doi: 10.1016/j.colsurfb.2012.08.014.
22. Ermak I. M., Byankina A. O., Sokolova E. V. Strukturnye osobennosti i biologicheskaya aktivnost' karraginanov - sul'fatirovannyh polisaharidov krasnyh vodoroslej dal'nevostochnyh morej Rossii. Vestnik DVO RAN. 2014;1:80-92. (In Russ.).
23. Dolores T. M., Florez-Fernandez N., Dominguez H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs. 2019;17(6):314. Doi: 10.3390/md17060314.
24. Yegappan R., Selvaprithiviraj V., Amirthalingam S., Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr. Polym. 2018;198:385-400. Doi: 10.1016/J.CARBPOL.2018.06.086.
25. Shen Y.-R., Kuo M.-I. Effects of different carrageenan types on the rheological and water-holding properties of tofu. LWT Food Science and Technology. 2017;78:122-128.
26. Varghese J. S., Chellappa N., Fathima N. N. Gelatin-carrageenan hydrogels: Role of pore size distribution on drug delivery process. Colloids Surf. B Biointerfaces. 2014;113:346-351. Doi: 10.1016/j.colsurfb.2013.08.049.
27. Li J., Yang B., Qian Y., Wang Q., Han R., Hao T., Shu Y., Zhang Y., Yao F., Wang C. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015;103:1498-1510. Doi: 10.1002/jbm.b.33339.
28. Chenxi L., Chunyan L., Zheshuo L., Qiuhong L., Xueying Y., Yu L., Lu W. Enhancement in bioavailability of ketorolac tromethamine via intranasal in situ hydrogel based on poloxamer 407 and carrageenan. Int. J. Pharm. 2014;474:123-133.
29. Chimene D., Lennox K. K., Kaunas R. R., Gaharwar A. K. Advanced bioinks for 3D printing: a materials science perspective. Ann. Biomed. Eng. 2016;44:2090-2102. Doi: 10.1007/s10439-016-1638-y.
30. Wilson S. A., Cross L. M., Peak C. W., Gaharwar A. K. Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting. ACS Appl. Mater. Interfaces. 2017;9:43449-43458. Doi: 10.1021/acsami.7b13602.
31. Boateng J. S., Pawar H. V., Tetteh J. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. Int. J. Pharm. 2013;441:181-191. Doi: 10.1016/j.ijpharm.2012.11.045.
32. Menshova R. V., Shevchenko N. M., Imbs T. I., Zvyagintseva T. N., Maluarenko O. S., Zaporoshets T. S., Besednova N. N., Ermakova S. P. Fucoidans from brown alga Fucus evanescens: structure and biological activity. Front. Mar. Sci. 2016;3:129. Doi: 10.3389/fmars.2016.00129.
33. Pomin V. H. Marine non-glycosaminoglycan sulfated glycans as potential pharmaceuticals. Pharmaceuticals. 2015;8:848-864.
34. Cunha L., Grenha A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar Drugs. 2016;14(3):42. Doi: 10.3390/md14030042.
35. Marinval N., Saboural P., Haddad O., Maire M., Bassand K., Geinguenaud F., Djaker N., Ben A., Lamy C. Identification of a pro-angiogenic potential and cellular uptake mechanism of a LMW highly sulfated fraction of fucoidan from Ascophyllum nodosum. Mar. Drugs. 2016;14:185. Doi: 10.3390/md14100185.
36. Purnama A., Aid-Launais R., Haddad O., Maire M., Mantovani D., Leto-urneur D., Hlawaty H., Visage C. Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice. Drug Deliv. Transl. Res. 2015;5:187-197. Doi: 10.1007/s13346-013-0177-4.
37. Park J.-H., Choi S.-H., Park S.-J., Lee Y. J., Park J. H., Song P. H., Cho C.-M., Ku S.-K., Song C.-H. Promoting Wound Healing Using Low Molecular Weight Fucoidan in a Full-Thickness Dermal Excision Rat Model. Mar. Drugs. 2017;15:112. Doi:10.3390/md15040112.
38. Wang L., Lee W. W., Oh J. Y., Cui Y. R., Ryu B. M., Jeon Y.-J. Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-kB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts. Mar. Drugs. 2018;16(7):239. Doi: 10.3390/md16070239.
39. Song Y. S., Li H., Balcos M. C., Yun H.-Y., Baek K. J., Kwon N. S. Fucoidan Promotes the Reconstruction of Skin Equivalents. Korean Journal of Physiology &Pharmacology. 2014;18(4):327-331. Doi: 10.4196/kjpp.2014.18.4.327.
40. Pielesz A. Temperature-dependent FTIR spectra of collagen and protective effect of partially hydrolysed fucoidan. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014;118:287-293. Doi: 10.1016/j.saa.2013.08.056.
41. Yanagibayashi S., Kishimoto S., Ishihara M., Murakami K., Aoki H., Takikawa M., Fujita M., Sekido M., Kiyosawa T. Novel hydrocolloid-sheet as wound dressing to stimulate healing-impaired wound healing in diabetic db/db mice. Biomed. Mater. Eng. 2012;22:301-310.
42. Tabarsa M., You S. G., Dabaghian E. H., Surayot U. Water-soluble polysaccharides from Ulva intestinalis: Molecular properties, structural elucidation and immunomodulatory activities. J food and drug analysis. 2018;26:599-608.
43. Alves A., Pinho E. D., Neves N. M., Sousa R. A., Reis R. L. Processing ulvan into 2D structures: Cross-linked ulvan membranes as new biomaterials for drug delivery applications. Int. J. Pharm. 2012;426:76-81. Doi: 10.1016/j.ijpharm.2012.01.021.
44. Alves A., Duarte A. R. C., Mano J. F., Sousa R. A., Reis R. L. PDLLA enriched with ulvan particles as a novel 3D porous scaffold targeted for bone engineering. J. Supercrit. Fluids. 2012;65:32-38. Doi: 10.1016/j.supflu.2012.02.023.
45. Dash M., Sangram K. K., Bartoli C., Morelli A., Smet P. F., Dubruel P., Chiellini F. Biofunctionalization of ulvan scaffolds for bone tissue engineering. ACS Appl. Mater. Interfaces. 2014;6:3211-3218. Doi: 10.1021/am404912c.
46. Axpe E., Oyen M. L. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 2016;17:E1976. Doi: 10.3390/ijms17121976.
47. StoBlein S., Grunwald I., Stelten J., Hartwig A. In-situ determination of time-dependent alginate-hydrogel formation by mechanical texture analysis. Carbohydr Polym. 2019;205:287-294. Doi: 10.1016/j.carb-pol.2018.10.056.
48. Solovieva E. V., Fedotov A. Y., Mamonov V. E., Komlev V. S., Panteleyev A. A. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering. Biomed Mater. 2018;13:025007. Doi: 10.1088/1748-605X/aa9089.
Review
For citations:
Kuznetsova T.A., Besednova N.N., Usov V.V., Andryukov B.G. Biocompatible and biodegradable wound dressings on the basis of seaweed polysaccharides (review of literature). Grekov's Bulletin of Surgery. 2020;179(4):109-115. (In Russ.) https://doi.org/10.24884/0042-4625-2020-179-4-109-115